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THEORETICAL AND EXPERIMENTAL STUDIES OF ANTENNAS

.AND ARRAYS IN A PARALLEL-PLATE REGION

PART I - THE CURRENT DISTRIBUTION AND IMPEDANCE OF AN ANTENNA

IN A PARALLEL-PLATE REGION

by

B. Rama Rao,

ABSTRACT

The integral equation for the current on the antenna has been

formulated using Green's theorem and a suitable Green's function based

on the method of images; the resulting equation has been solved by expressing

the current as a Fourier series in terms of waveguide modes. It has been

shown that in the case of thick antennas the logarithmic term in the current,

due to the idealized delta-function generator, makes a marked contribution

over a significant length of the antenna and the so-called 'transition' region

is much larger than for the free-space antenna. The admittance of the

theoretical model can be brought into good agreement with the experimental

results by subtracting out the infinite gap capacitance and replacing it by

an empirical correction term to account for the input susceptance of the

actual feeding gap. An anomaly in the behavior of the antenna at

resonance, noticed by Lewin, can be avoided by assuming a complex

propagation constant in the guide, due to small but finite losses in the image

planes. Closed form expressions for the current and admittance. have
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been obtained and compared with experimental results. The general

agreement is found to be good.

To avoid complications due to the feed-point singularity, the admit-

tance has also been obtained by a variational method. There is good

agreement with experimental results for antenna lengths in the range

0 < k h < 3. 7 ; but the theory deteriorates for higher values of k h.

Extensive experimental. measurements have been made on the antenna

and a description of the apparatus is included in the report.



:SRI 5 -3-

1. INTRODUCTION

Much attention has been focused during, recent years on obtaining

mathematically rigorous solutions to a large variety of problems concerning

antennas radiating in free space .(I); depending, on the complexity and nature

of the problem the techniques employed range from rigorous Fourier-

transform and Fourier-series solutions to the more approximate iterative

and variational techniques. In most cases the theoretical results have

been supported by comprehensive experimental investigations. In.contrast,

however, the general problem of determining the current distribution..and

driving-point impedance.of antennas radiating into.waveguides has received

scant. attention until, quite recently. Most of the early investigations (2)

were confined to obtaining the impedance of small, 'filamentary' antennas

employing the emf method with an assumed current distribution on the

antenna. The inherent inadequacy of. such a method as compared to the more

* sophisticated integral equation method and its variational modification. has

been pointed out by King (1). In practice,it.is also not permissible to lay

such severe restrictions on the finite thickness and size of the antenna.

Lew'in (3,4) has lately given the problem a more careful mathematical

treatment. In a recent paper (3), he has considered the radiation from a

linear antenna in a parallel-plate region using a modal expansion method.

The solutions he obtains for the current and input admittance. are not in a

closed form and cannot be evaluated numerically for comparisonwith

experimental results. Furthermore, he has noticed certain anomalies

concerning the behavior of the antenna near resonance which cannot be

'I
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explained physically; all of these aspects deserve further examination, both

theoretically and experimentally. The main motivation for the present

investigation, howeverp arose~while considering the propagation of surface

waves along an antenna array placed in a parallel-plate region; for treating

this problem rigorously it was necessary to know the current distribution

on the individual elements of the array and the mutual coupling between the

elements. An exact solution to the simple problem of a single antenna in

the parallel-plate region is a necessary prerequisite towards obtaining a

better understanding of this more complicated problem.

In this report an integral equation technique has been employed to

obtain the current distribution and admittance of the antenna. The mathematical

procedure adopted here closely follows that used for solving the free-space

antenna problem. Since-these two cases are twin aspects of the general

problem of antenna radiation, a comparison between them might prove to be

.instructive. Another attractive advantage of the integral equation method is

that it can readily be extended, as outlined by King .(I) for obtaining the current

distribution on coupled antennas or in an array of antennas,

To facilitate experimental measurements the antenna was driven near

its base by means of a coaxial line connected to one of the ground planes;

this is in contrast to Lewin's case (3) where the antenna was driven at its

center between two plates, but it was not a practically feasible scheme and

had to be discarded. Other than this slight difference, the problem treated

here. and the one considered by Lewin are identical.
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InSec. 2 the integral equation for the current has been. solved.by

expressing the current on the antenna as a Fourier series in terms of wave-

guide modes. Special, attention has been paid to the following aspects of

the problem: (1) the logarithmic.singularity in the current and its effect on

admittance, (2) the behavior of the antenna at resonance, (3) current on

an infinitesimally thin antenna, (4) the charge distribution onthe antenna.,

(5) the effect of assuming a filamentary kernel in the integral equation. Closed-

form solutions for the current and admittance have been obtained and compared

with the experimental results. The general agreement is very good.

While the Fourier-series method provides accurate solutions for the

current distribution and conductance of the antenna, the susceptance values

obtained from it are. rather ambiguous owing to the infinite gap capacitance of

the delta-function generator. In Sec. 3 the impedance of the antenna has

been obtained by a variational technique using a suitable trial function for the

current. The variational method ignores the singularity at the driving point

and provides an approximate but continuous solution for the current distribution

over the entire length of the antenna. The theoretical and experimental

admittance values are in excellent agreement until k h = 3. 7 but deteriorate

rapidly thereafter.

Section 4 is devoted to experimental phase of the research. A

description .is given of the apparatus and experimental techniques used for

determining the, current distribution and admittance of the antenna.

1I
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2. FOURIER-SERIES SOLUTION

Formulation of the Problem

The antenna under consideration is the center conductor of the coaxial

cable which extends inside the parallel-plate region and has its upper end

connected to the top plate. Fig. 1 1 shows the geometry of the idealized model

driven by a delta-function generator. A cylindrical coordinate system

(r , 0, z) is introduced and the axis of the antenna of radius a is made to

coincide with the z axis. The two infinite perfectly conducting image planes

are situated at z = 0 and z = h. The antenna is assumed to be excited by

a slice generator situated at z = + 8 . The equivalent structure obtained

by considering successive reflections in the two planes is that of an infinitely

long antenna-fed by generators along the entire length spaced at intervals

depending on the distance h between the two planes. Alternatively, the

antenna may also be considered as an infinitely long collinear antenna array

of half length h , placed end to end.

Because of angular symmetry, the only nonvanishing components of the

field are Ez, E r and H . Since.E vanishes at. the two plates, the z component

of the vector potential Az satisfies the Neumann boundary condition
%z

- 0 at z = 0 andh. (1.1)

The general equation satisfied by A z at all points outside the conductors is

(V + ko 2 ) AZ = 0 (1.2)

,where k ° '= 2/ is the wave number.
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The:solution, of this equation may be obtained by applying Green's

symmetric theorem

-V'I E vy de' = v n d (1.3)

with u = A z and v = G, where G is the Green's function satisfying an

inhomogeneous wave equation-with periodically distributed sources ,(see ensuing

discussion)
d2 + kZ] G = - - 6(r - rm') (1.4)

m

and the following boundary conditions:

(1) G is continuous except at r = rm' where it has a logarithmic singularity,

(2) G satisfies the radiation condition at r - oo and the Neumann boundary

condition 8G 0 0 at z = 0 and h.
8az

k is the free-space.wave number; r and rmI are the vector

.coordinates of the field and, source points respectively; 6 (r .- rm') is the three-

dimensional Dirac delta function defined in the usual manner.as

8 (r - r') = r / r I'M m

P (r.- r m')d r I if T includes r

7

0 if T excludesr '
m

Image Representation of the Green's Function

The .appropriate Green's function .for the problem can be. constructed by

using the principle of images (see Fig. ..2). Let the primary source point I
U|
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The appropriate Green's function for the problem can be constructed by

using the principle of images (see Fig. 1. 2). Let the primary source point
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be situated at z'. With consideration of its successive reflections in-the two

planes an infinite series of image .sources is obtained. These are located

at 2mh-z' where m = O, +1, +2... and at 2mh + z' where m = +1, +2,...

as shown in Fig. 1. 2. The resultant effect of all these image sources

.is such that G satisfies the Neumann boundary condition BG/az = 0

at z = 0 andh.

In view of the above discussion and in analogy with free-space antenna

theory, a suitable Green's function satisfying all. the boundary conditions

mentioned. in Eq. 1. 4 is

cx -jkoRm

= 41TR (1.5)

where Rm = jr - rm'I denotes the vector distance between the field and

source points.

Now consider Eqs. 1. 2 and 1. 4 and apply Green's symmetric theorem

to a pill-box shaped surface of the form shown in Fig. 1. 3. It follows from

Eq. 1. 3 that

JG (V2A + kA ) - A(V 2 G + k2G] d-'

GA/On -) do-' (1.6)
SI,1+S 2 +S3 +$4

where.S is the outer surface of the pill-box, Is and. S3 are. the top and bottom

surfaces and S 4 the. circumference of the antenna. As.S1 recedes to infinity,

the integral over. S1 reduces to zero since .both A Z and G vanish at infinity due
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to the radiation condition. Also the integrals over S 2 and S 3 contribute

nothing since both 8 and G vanish on the image plates.

Furthermore, since Ar = A0 = aA/aQ = 0, and since the method

of excitation is such that only the z component K z of the current exists

on the antenna, A z has to satisfy the following boundary condition on the

surface S4 of the antenna.

K
z (1. 7)ar qr=a V

where K is the current density on the surface of the antenna.z

Thus, of the four functions in equation 1. 6 only aAz/8z is

discontinuous across S4 . Hence,

f A 6 (r - r'l) d'r T I K Wz) Gda-' (1.8)

T7. S 4

where r 0 refers to the vector coordinates of the primary source point.

With I(z') = 2~a Kz (z), Eq. 1.8 becomes

h 27

A(r) I (z') dz' G (19)

0 0

where -= 0' -and Gis given by 1. 5.

From antenna theory the distance R in the kernel is given by

R = [( z + z' - Zmh) 2 + (Za sin /z) J 1/2 (1. 10)
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The substitution of 1. 5 and 1. 10 in 1. 9 leads to

h ejW)d I 2 "T(-z'-Zmh)2 + (Za sin V/2)
A (r) = _4 _ I z',)dz, '

m ff z-- V-z-z.2mh) + (2 asin V/2) /o oj

O -jko z+zI-2mh)2 + (2asin V/2) 1/2

+ L 2 i d V/2. (1. 11)

m=-O- [Z+z'- 2mh) + (2asinA/2) I

The series occurring above can be converted into a more convenient form

by using Poisson's summation formula given by

7 f (am) = 1/a F(2M 7T/ci) (1. 12)
m: -oom = -o

where F (w ) is the Fourier transform of f (t) and is defined by

+o0

f(t) = -e F( w d'w (1.13)

-co

The required Fourier transform in this case is

+oD

e exp -jk °0  
2 + ( - t) /

-co L 2 + ( _ -t) 2 1/ 2

2e K Lc2 (tW2 - k 2 ) (1.14)
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where K is the modified Bessel function of the second kind. With 1. 14 and
0

1.1Z in 1. 11 it follows that

+OD -jko (z - z mh)2 + (2asin V/2)/e -

2y 2 1/2
M=-o [z z - Zmh) + (Zasin V'/2)2

OD j mv (z-z')

1 - F± )2-k2J (1.16)

i. 2 a sin )2 [(V ) 2_ kO I 5

= --

Similarfly,

On -jk z + z' -2mh)2 + (esasin r/2)

h ex

M=- z '-2m) (ai 2

A=r = e Ko (2a(nkmy s- k°  1116

In the above equations M 2- k 2 r' is easily recognized to

T~iEv 02 0o

be the mode propagation constant in the parallel-plate guide.

It is now possible to add (1. 15) and (1. 16) and combine the terms

symmetrically with respect to rn = 0 . With this result in 1. 1 1 and the

substitution of 2 9) for ,the following result is obtained

Az (r)  2 1 1 (z') dz'. 1 2ka-snT

Cos mv z Cos Mirz'
-h- h (.7
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where

m-7 1 . (1.18)

The tangential component of the electric field on the surface of the

antenna is given by

EZr ko -  A z + k A r (1.19)
Z) ~ 0 Z r=a

With Eq. 1. 17 it follows that

h

(E) r=a = j 0 -z ) (z)dz m0 L 2k6aymsin Q)dQ]

0

4)- (mT/k h)2} cOsmlrz cOsmwz't i- - - ,- -( 1 .2 0 )

The electric field along the surface of the antenna [El must be equal
U r=a

to Z I( z) (z / 0) where Z is the internal impedance. The driving

voltage V of the slice generator is given by
05

lima P
V 0 = -i (E z  r dz (1. 21)V° 6 - 0 - r=a

where (E z e) is the impressed field maintained across a thin slice 26

on the surface of the conductor, From the nature of Eq. , 1. Zl , it is

seen that at z = 0, (E) can be expressed in terms of the Dirac

delta function as
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(E e) = -V 6 (z)
zr=a

Hence, the electric field at any point along the antenna is

(z ) =ZI(z) V 6 (z) 0 < z < h
r=a0

iFor a perfectly conducting antenna Z = 0 and

(E z ) = - V 0 6(z) (1. 22)
r--a

From 1. 22 and 1. 20

h

V0 6(z) = jAo' K(:z, z) 1 (z) dz' (1. 23)

where the kernel of the integral equation K(z, z') is given by

K(z, z') K (jZka sin 9 ) dQ

2 7 T h-

K(zkoaY.m sin Q dQ m( )i cos h cos

m=l 0

(1. 24)

The integrals appearing in 1. 24' can now be evaluated by means of the

appropriate integral representation for the Bessel functions. The formulas

used in the derivation below are all obtained from Magnus and Oberhettinger (5),

which will hereafterwards be briefly referred to as (M and 0).
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*Consider the first integral

IF IT

P Ko(akoaym sin 0) dQ f Ko(cm sin 9) dO (1. 25)
0 0

where c= Zkaym
Cm  m

The integral representation for the K function is given by M and 0 (5)

page 27 as

CO S

K (ax) = -c 2x t dt (a, x real and positive)
0 2o Ja +t2

With this result it follows that

p = I CoS [sinl dt dQ f dt Cos sin d9

o o c m + 2  dd ~ c~ 2 J'~
0 00 J (t)

T 0 dt. (1.26)

0 Cm  +t

Use is now made of Watson's formula (5) [M and 0 p. 30]

Jax), (at)V/2 (-- K1 2  -a) dt

(Re v > - 1, a real and positive, I arg xl <IT /2)

,With Y = 0 in the above equation and with the substitution of this result in

1. 26 , it follows that
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7T

P = K ° (2koa 7m sin Q ) dO = 7T I° (k0am) K° (koa-ym) (1. 27)

0

where I and K are the modified Bessel functions of the first and second kind.0 0

For imaginary arguments the identities Io (jz) = J (z) and

K (jz) -j L H (2) (z) apply,where J (z) is the Bessel function of the
o 2 0 0

first kind and H (2) (z) is the Hankel function of the second kind. With m = 00

in 1. 27 and with these several identities it follows that

K (j2koa sin0)dQ P H (2) (k asinQ)dQ
0 2 f o o

o 0

2
- Jo (k o(2)(i28- 2 H (k(ka) (1.28)

(See Appendix Ifor rigorous derivation of this formula).

The substitution of 1. 27 and 1. 28 in 1. 24 leads to

K(z, z') 0 2'h j -I- Jo (koa) H (2) (ka)

+ 2_ 1o (koamm) Ko (koa\2m) cosmTz cosmlrz
+2km Iha )

m=lo

for 0 < k h < 7. (1.29)
0

When the separation of the parallel plate exceeds a half-wavelength,

that is when w /koh < 1, the term corresponding to m = 1 has to be modified

to account for the propagation of the first higher-order mode in the parallel-

plate medium. The corresponding expression for the kernel is
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-ko F "H(2)

K (z, zj) 7T- --- Jo (koa) H (k 0 a)

+ 2 j i - 7r /k h) o k akO h[ a T/ °  OS co Trz CO co lzh

2 0jTk) 0 k 0 a l A2/khj H 0 (2) 1-/koh3)c T h

+ 2 Io(koaym) Ko (koam) h [9hh

m=2 a

for 7 <kh< 27T. (1.30)

Fourier-Series Solution

To obtain the Fourier-series solution for the current distribution along

the antenna, consider first Eq. 1. 23.

h

V ° * 6 (Z) = j'o K (z,z') I (z')dz'

where the kernel from Eq. 1. 29 may be written as

OD

K(z,z') = a0 + 2 7 am cosm7rz/h cosmTz'/h. (1.31)
m=l

In Eq. 1.31
k.

ao = - 0 J (koa) H (koa)
o Tvrh 2 o 0 0 0

and a m  - 7 0k h  -i I° (koaym). Ko (koa'm) . (1.32)m 2Th o
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The current on the antenna may now be expressed in terms of the

Fourier series
00

I(z) = I + 2 I cosm7T/h (1. 33)

m=1

After the substitution of 1. 33 in 1. 31 the integration may be performed to obtain

I = Vo/joh2 a

The current distribution on the antenna is then given by

I(z) = 1,,(z) + jI,(z) 0 o 2  + 2 COS M

j0 1 osm1z/;
o m=l

j Vo + 2 O cos m rz/h= 0k°h 7T 2 kaH(2)(koa

o0 j.-Jo(ka) Ho(k0a) m=l 7m Io(koaym)Ko(koaym)

(1.34)

where I" is the component of the current in phase and I' is the component of

the current in phase quadrature with the driving voltage and the admittance

( Y ) is

=00
S = 60k h  7T 1ko)Ho2) + 2 1

0 10 k a H (koa) m =l TYm 1 (koa'y m )Ko(koa m ,

when 0O< koh < 7T (1. 35)
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When the plate separation is greater than a half-wavelength

Y 6 h . (koa ()}(k a)

+21 2' 2 ) (ka ) j (1.36)

m=2 m 0 (k0a 0 m

From 1..35 it is seen that the conductance of the antenna.is due only to the

primary TEM wave corresponding to m = 0, whereas all the evanescent

higher modes contribute only to the susceptance. When the plate separation

is increased beyond a half-wavelength, the first higher-order mode m = 1

starts propagating and introduces a conductance term, as can be seen from

1.,36., Because of this coupling between the two modes, the conductance of

the antenna is now larger, signifying increased radiation. As the plate

separation increases further, the higher-order modes cause a periodic increase

in the antenna conductance..

Closed-Form Solutions for the Cur rent Distribution

For sufficiently large values of m

m = ,/m 7/koh) -I m7r /o h

and

k ay, mI a
0 M-
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Therefore, for the higher-order terms the I° and K ° functions may be replaced

by their asymptotic values given by

1 0 (x') -e /(27Tx )1/2 and K .(x) - (7 ? x) 1/2 e -x for large x, (1. 37)

With these results it follows that

"m I (koaym) K (koaym) 7m mI T (1.38)

o 2 (koa) (koh)

To obtain closed-form expressions for the current the series in 1.. 34

can be truncated at M -. h/ a and 1. 36 can be substituted in the coefficients

of the higher-order terms.

The current is then given by

M

I(z)= 1 +2 2 Cos mi z/h

0 j- J (k a) H (ka) m=i 7 m Io(koaym)'Ko(koan

4(ka) . (k h) O cos m7r Z/h (.39)

+ - .V c m (.9

m=M

The series in the last term of the right-hand side can be evaluated by

means of the summation formula

S cos m~rz/h - ln sin -- z /h (1.40)
m=l

With this formula in J. 39 the current distribution is given by

I(z) 0 J T- Jo (koa) I Ho12) (koa)
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I2(k a) 1 c:os mirz
+21 2 L'(koa-m). Ko(koaym) m j h

m=l 1

- 4/ (koa). (k h).Int2 sin (i z/2h)}

for0 <k h<7r, (1,41)

In Fig. 1. 5 the in-phase component I" and the phase-quadrature

component V of the current calculated from Eq. 1. 41 for an antenna with

a/k = 0.01058 and k 0 h = 7/2 (h.= X/4) with M = 10 have been plotted. The

in-phase component I", which is contributed only by the principal radiating

TEM wave, is found to be constant over the entire length of the antenna; it

makes a significant contribution to the current distribution. The phase-

quadrature component I' is contributed by the evanescent higher-order modes;

it involves the logarithmic term, and hence has a singularity near the driving

point giving rise to an infinite gap susceptance; this aspect will be discussed in

greater detail later. The logarithmic term actually represents the current

charging the adjacent knife edges (with infinite capacitance) of the idealized

delta-function generator. I' makes only a minor contribution near the end,

where the behavior of the current distribution is determined mainly by .1".

The current amplitude V z = 11 zZ I"2 therefore tends to flatten off at

the end of the antenna as can be seen from Fig. 1. 6.

The current distribution for antenna lengths in the range ir < k h.< 27r
0

is given by
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1(z) =-~; { 2. 1 (2)
0 jo-I- J. (k a). H (k a)

+ 2 Z Co 1 2(kak.(kh) (km0 h

m=2 0 Tm

+~ ~ ~~~( a)2 h)( ) ( ) L Csm7

4(k0a). (k0h) in sin ( z /Z (1.42)
IT [

In Fig. 1. 8 the theoretical values (with M = 10) of I' and IP for an

antenna with k h = 4. 7124 (h = 3/4X), a/A = 0. 01058 have been plotted.

Now the contribution to the in-phase component I" comes from both the

TEM wave and the first-order mode (m = 1). Since the first-order mode

has a -cosinusoidal dependence on length, the component I" no longer is

a constant as in the case of the quarter-wavelength antenna (k h = i /2).

It has a slightly higher amplitude near the driving point than at the end,

The It component again shows a logarithmic rise near the driving

point; it has a minimum at k z = 1. 6 but once again rises to a maximum
0

near the end.
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Numerical Accuracy of Calculations

The term M at which the series can be truncated is roughly given

by h/na and depends on the thickness and height of the antenna. For shorter

and thicker antennas fewer terms are required. In practice, however,

the number of terms actually needed depends entirely on the desired numerical

tolerance, For the case of the experimental antenna with k a = 0. 0664 and with

k0h ranging from 0. 5 to 6.1 a summation of the first ten terms was found quite

adequate to obtain the required degree of accuracy for comparison with

experimental results. In Fig. 1. 4 1/I° (koa-m) . Ko (koaym) has been plotted

against its asymptotic equivalent 2 koaym for an antenna with h = X/4 or

k h = 7T /2 and a/A = 0.01058 and also for a/X = 0.03175. The term0

M = h/iTa in the two cases is approximately 8 and 3. It can be seen from

the curves that the error in the truncation process is indeed very small.

Comparison with Experimental Results

InFig. 1. 6 and Fig. 1. 7 the theoretical and experimental results

for the amplitude of the current II = V-1 2 + 1 2 and the phase angle

Q = tan - 1 Il/I" have been plotted. As can be seen there is excellent

agreement between the two except near the driving point because of the

logarithmic singularity.

In Figs. 1.8 and 1.9 the amplitude and phase of the current for an

antenna with k h = 37 (h = 3X/4) and a/X = 0. 01058 have been calculated

from Eq. 1. 42 with M = 10, and compared with experimental results.

Agreement is very good.
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Current Distribution and Admittance at Resonance

When the antenna is a half-wavelength, i. e. , k h = IT, the coefficient0

of the cos 7Tz/h in Eq. 1. 42 shows a singularity and needs close inspection.

For small arguments Jo (x) - 1 and Ho(2) (x) l 1 - j- log ( x)

_ 7T

where P = - - log 2 and 7 = Euler's constant = 0. 5772. With these identities

used in the coefficient of the cos7Tz/h term in Eq. 1. 36, the term containing

the singularity may be denoted as follows:

P = (1.43)

+ -y + log (1 ka + 1 log

where

= 1 - (IT/koh)2 
. (1.44)

When k h = IT (v = 0), P = o. This gives rise to an infinite current on the

antenna. This, of course, is physically quite meaningless since the current

on the antenna has always to be a finite quantity. A similar anomaly has

also been reported by Lewin (3). To circumvent this difficulty it can be

assumed that the parallel-plate region has a small but finite attenuation

constant owing to losses in the two ground planes, so that k is now a
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complex quantity with a small negative imaginary part - j a , where a -is

the attenuation constant. This assumption is practically quite plausible

since the image planes are never perfectly conducting. The complex wave

number can be represented by 1 = -ja, where P = 27/xA.

For Ph =T

h 2- 7
22

j- C + aX
?T 4 7T

If the cL term is neglected, it follows that v - J L (1.45)

7T

Also Ra ; k0 a. Substitution of these results in 1.43 gives P = T/a

(1.46)

2
where 2 1log - j -- -

[j /2 + y + log (-k + T g(

(1.47)
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Since the attenuation constant is generally a very small quantity, the

cos 1 term completely predominates over all other terms in 1,42

(except for the logarithmic term close to the driving point) and so the

current on the half-wave resonant antenna becomes a pure cosine

I(z) = P cosnz/h (1.48)

where P is given by 1. 46.

This phenomenon has been confirmed experimentally. In Fig. 1. 11

and Fig. 1. 12 the experimentally observed amplitude and phase of the

current on the antenna have been compared with the theoretical curve, There

is close agreement between the two. The admittance of the half-wavelength

antenna is

[Y= P = T/ a (1.49)
0

This is a very large quantity which is limited only by the small but finite

attenuation constant of the parallel-plate region to the propagating waves.

In Fig. 1. 13 the theoretically calculated values for the conductance and

susceptance of the antenna in the vicinity of resonance have been compared

with the experimentally measured values. In Table 1-1 the measured values

of conductance and susceptance of the antenna near resonance have been

tabulated. From Fig. 1,13 and also Figs. 1.17 and 1.18 it can be seen

that both the conductance and susceptance show a sharp, almost discontinuous

rise near k h = ff. The conductance particularly, as can be seen from

Fig. 1.17, shows a sharp 'spike' when the antenna is nearly a half-wavelength
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long. The conductance jumps from 2. 29 millimhos at k h = 3. 07 to 29. 640

millimhos at k h = 3. 14. Since the conductance is very sensitive to the0

antenna length near resonance, the experimental measurements had to be

done with great care.

The antenna near resonance, therefore, behaves essentially like a

short-circuited transmission line. The current is almost a pure cosine

and its amplitude is very high. An examination of Figs. 1. 11 and 1. 12

shows that the current in the lower and upper halves of the antenna,while

equal in magnitude, are 1800 out of phase and so their individual contributions

to the field at distant points cancel out. This implies very little radiation

loss or low radiation resistance and high conductance.

The same phenomenon repeats when k h = 27r, only this time the

singularity is in the m=Z term and the current distribution is given by

I(z)oc cos 2 7Tz/h . (1. 50)

In Fig.- 1,14 the ampbtude of the experimentally observed curve has

been compared with theory to confirm the above result. The conductance

again shows a sharp rise as can be seen from Fig. 1-17..

A more rigorous treatment of this phenomenon has recently been

made by Tal Wu (6), without resorting to the expedient of a complex

propagation constant.
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k 0h G[mhos x 10 3 jB[mhos x 10 3

2.41 1.13 +j8. 02
2. 63 1. 00 +jlO. 83
2.71 1. 12 +j 11. 76
2.83 1.06 +j 1 4 , 7 2
2.89 1. 16 +j17. 75
2.93 1. 22 +j20. 18
2.99 1,28 +j26, 65
3.02 1, 16 +j31. 22
3.05 1. 87 +j36, 92
3. 07 2. 29 +j44. 14
3. 11 4. 18 +j72. 77
3. 14 29. 64 +j189. 25
3. 20 18. 10 -j79, 02
3. 30 12. 68 -j27. 87
3.46 6. 98 -j9. 81
3. 68 4.,20 -j3. 62

TABLE 1-1. Measured Values of the Admittances Near Resonance

(a/KX = 0. 010 58) .
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Effect of the Logarithmic Singularity in the Antenna Current

The current as given in Eq. 1. 41 can be separated into two parts

I(z) = IA(z) + 1oo(z) IA (z) represents the current determined by the

impedance of the antenna itself and is given by

F M
IA = 6v 1 + 2 I

A oh ( Ho 2 )(k 0 a) mio (ka ) K (kayo0k J " - Jo(koa). I okoa m)

2(koa) (koh) mTz 151
7Tm hL " *

On the other hand,
I (z) V (koa) . in 2 sin (7z/2h) (1.52)

00 51T 0 9
represents the current determined by the infinite capacitance of the knife

edges of the idealized 'delta-function generator; it has a singularity at the

feed point giving rise to an infinite input admittance. It is to be noted that

only the phase-quadrature component of the current is infinite; this means

that only the input susceptance is infinite while the input conductance remains

finite.

The amplitudes of I IIAI and I for an antenna with k h = 7/2o0

and a/A = 0. 01058 have been plotted in Fig. 1, 16.

Such a singularity in the feed-point current has been investigated

by several authors (7, 8, 9, 10). The results obtained here are somewhat at

variance with the corresponding case for free-space antenna. The

following observations may be made.
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1. According to King and Wu((7) and Duncan (8) the logarithmic term in the

case of a free-space antenna is

I jV (k.a). ink z (1. 53)
coA 0O 0o

For the parallel-plate antenna

I(z)(ka) in sin (7T z/2h) (i. 52a)
loop~ z  157 2

The factor 2 missing in i. 52 arises from the fact that a monopole is

treated instead of a dipole as in (7). In the parallel-plate case the logarithmic

term depends on the height of the antenna (spacing between plates) whereas in

the free-space case it is independent of the length of the antenna, This

difference is probably due to the imaging effect of the two plates which gives

an infinite series of generators separated by a distance h.

2. Though such a singularity in the feed-point current has been predicted

theoretically for the free-space antenna, no such phenomenon has been

detected by either the Fourier or iterative solutions of the integral equation

for the antenna current. Duncan and Hinchey (10) have carried out the

Fourier expansion to as high as the 25th order without noticing any untoward

behavior.

3. Many of the previous workers have defined a 'transition region' or

'boundary layer region' where the logarithmic function makes a significant

contribution. According to Wu and King (7) the transition zone is given by

z = X/2e -1/Ka (1. 54)
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For the antenna used in the experiments k ° a = 0. 0664 (a/ = 0. 01058);

-7
this gives k z = 2. 9 x 10

According to Duncan (8) the corresponding transition zone for an

antenna with koa = 0.01 is kz0 = 0.008 (z s/X = 0.0013). He has also

shown that z s < /25 for h/a >, 60. In Fig. 1. 15, the amplitude of the

current near the driving point measured experimentally for an antenna with

k h = 7T /Z and a/k = 0. 01058 has been compared with the theoretical
0

results obtained by the Fourier-series method. If the transition zone is

defined as the point at which the logarithmic term exceeds the nominal value

of the observed current, then from Fig. 1.15 the transition region is k0 z =

0. 175 , which is much higher than the values predicted for the free-space

antenna.

4. It has been further proposed that in order to get a finite value for the

input admittance the logarithmic term in the current distribution should

be subtracted out. Such a subtraction process, while valid for thin

structures, may be questionable for thick antennas like the one used in the

present experiment. In Fig. 1. 16, the amplitude of the currents

II, IIAI and I10II for an antenna with k h =n/2 and a/k = 0.01058

has been plotted. It can be seen that the logarithmic term makes a marked

contribution over a significant length of the antenna. In fact, the dip in the

current distribution at k z = 0. 2 seems to be due ptincipally to the0

logarithmic term. However, as the antenna gets thinner the logarithmic
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term plays a less significant role because of the factor k a in the coefficient;0

in fact, for an infinitesimally thin antenna it has been shown (see ensuing

discussion) that the current distribuition becomes a flattened cosine curve.

Admittance of the Antenna

To compare the theoretical values of the admittance with the

experimental results we have to subtract out the infinite gap capacitance

due to the idealized delta-function generator. Thus, from equation 1. 41

we get

Yo = Go + jB 0  1 (2)

0k L -. Jo(k a). H (ka)

M1 
2(k a). (koh) 1+ 22 - i-T

+ 2 -ym IO(ka-y) KO(ka-y)7 1 4m=l 'm oka'm) okam)

However, it is necessary to add to this result a correction term to account

for the input susceptance of the actual gap or feed (9, 10). The correction

term denoted here by jBGAP may be obtained empirically by comparing the

experimental results with the theoretical values for B given in equation
o

1. 54. The final theoretical results to be compared with experiment are then

YF = G + j(B 0 + B G F + jBF (1, 55)

Note G = GF -
0 F

In Tables 1-2 (A) and 1-2 (B) the gap correction B GAP = BEXP - B (1. 56)
0
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BGAP B EXP Bo

BEXP = Experimentally Measured Admittance

B = Susceptance After Subtracting Infinite Gap Susceptance Obtained by
0 Fourier-Series Method.

BGAP Gap Correction Susceptance

A)

k h Bo[mhos x 103 ] BEXP[mhosx103] BGAP[mhos x 103

0. 7854 -j5.49 -jl. 10 +j4. 29
1. 0000 -j3. 83 +jo. 20 +j4. 03
1. 2960 -j2.25 +jl. 60 +j3.85
1. 5708 -jO.99 +j3.10 +j4.09
1.8450 +jo. 21 +j4.50 +j4.38
2. 0000 +jl. 06 +j5.30 +j4.23
2. 3562 +j3.34 +j7.60 +j4.25

Average value of BGAP = +j4. 10 for 0 < k h < ir.0

B)

koh Bo[mhosx I03] BEXpmmhos xl03] BGAP[mhos x 103]

3. 5000 -ji2.4 i -j7.40 +j5.01
3. 9270 -j6. 23 -jO. 40 +j5. 83
4. 3000 -j3..98 +jl. 10 +j5.08
4. 6200 -j-Z. 55 +jZ. 80 +j5. 35
4.7124 -j2.17 +j3.20 +j5.37
4. 9000 -jl. 37 +j4.15 +j5.52
5. 1000 +jO.47 +j5.40 +j4.92
5.4978 +j2.00 +j5. 55 +j5. 55

Average value of BGAP = +j5. 41 iw < k0 h < 27r .

TABLE 1-2 (A) and (B), Evaluation of Gap Correction Susceptance.
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has been tabulated. B EXP is the value of susceptance obtained experimentally

and B is given by Eq. 1. 54.0

Because of their high values and steep variation,the values of B

near resonance have not been taken into account while calculating B GA P lest

they should lead to erroneous results.

It can be seen that in the range 0 < k° h<IT, BGAP is nearly constant
-3

and has an average value of 4. 10 x 10 mhos. In the range 7T < k 0 h < 27T

B GAP is again nearly constant but average value is 5.41 x 10- 3 mhos. This

increase in B Ap correction term is probably due to the fact that when the

plate separation is greater than a half-wavelength , there are two modes

propagating in the guide which might change the field distribution at the

aperture of the driving coaxial line.

Comparison with Experimental Results

In Figure 1-17 the theoretical values of the conductance obtained by

the Fourier-series method have been compared with experimental results.

TABLE 1-3

YF =GF + jBF = Fourier-Series Admittance of Antenna

BF o 0 + BGAP

where B = Susceptance after Subtracting out Infinite Gap Susceptance0

Obtained by Fourier-Series Method. BGAP = Empirical Gap Correction

Sus ceptance.

BGAP = +j4. 102 for 0 < k h < 7T

B GA P = +j5.413 for T < k h < 27T
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In Fig. 1. 18 and Fig. 1. 19, the theoretical values for susceptance BF

(obtained after subtracting infinite gap susceptance and adding the empirical

gap correction term) have been comnared with measured values. They are

found to agree well. The theoretical admittance values obtained by the

Fourier-series method have been tabulated in Table 1-3.

Gap Capacitance of the Delta-Function Generator

The logarithmic term in the current distribution due to the delta-

function generator may also be written from 1. 34 and 1. 39 as

4 (ka kh o Cos m7T z
I W jZITV 4 ( h (L 57)OD oko h  

7r 7 m

m=l

The gap susceptance is given by

8 1 (1. 58)
Yo 0z0 W 01 1 - ?o- (k 0a) m

z=O m=l

where M

= y + ln M (. 59)

,Y = Euler's constant = 0. 5772

ThusYO = J  8 (koa) , D (. 60)

where D is an infinite positive constant. It is worth while noting that, as

in the free-space case (7), Y is proportional to the frequency and
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kh GF[mhos xl0 3  j:B (mhos xl03  j'BF[mhos x10 3]

0. 5000 5.00 -j8. 83 -j4. 73
0. 7854 3. 18 -j5.39 -j1. 29
1.0000 2. 50 -j3.83 +j0. 26
1. 2960 1. 93 -j2.25 +jl, 85
1 .5708 1. 59 -jo. 99 +j3. 10
1.8450 1.35 +jO.21 +j4. 31
2.0000 1.25 +jl. 06 +jS. 16
2. 3562 1.06 +j3. 34 +j7o45
2.7000 0.92 +j8.27 +j12.37
2.8250 0.88 +j12.01 +j16. 11
3.1000 0.80 +j82.72 +j86.82
3. 1300 0. 79 +j309.47 +j313.. 57
3. 1500 96.89 -j334. 23 -j328. 81
3. 1700 36. 29 -j110.84 -jl05.43
3. 2500 13.02 -j34. 10 -j28.69
3, 3000 9.88 -j24.64 -j19.23
3. 3570 7.94 -j19.01 -j13.59
3. 5000 5.60 -j12. 41 -j7. 00
3. 9270 3. 36 -j6. 23 -j0.81
4, 3000 2. 62 -j3. 98 +jl. 42
4. 6200 2. 25 -j2. 55 +j2. 85
4.7124 2.16 -j2.17 +j3.24
4. 9000 2.02 -jl. 37 +j4.04
5. 1000 1.88 +jO,47 +j5.88
5.4978 1.67 +j2. 00 +57. 41
5.8000 1. 54 +j7.68 +j13. 09
6. 1500 1.42 -j23, 46 -j18.05

TABLE 1-3 Theoretical Admittances of Antenna Determined by Fourier-

Series Method; a/ = 0.01058 ; Truncation term M = 10
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circumference of the antenna but is independent of the antenna length h.

Since o = and k 0 OV 0C

the gap capacitance

Y
C oo 8 aD=8 a Lt [- + in M] (1.62)00o jW 0 0 oaD=8g M_-o0

It has already been noted that a finite gap correction term BGAP

must be added to the theoretical susceptance values in order to bring them

into agreement with experimental results. For 0 < k h < IT theO

correction term evaluated empirically from experimental results is

4.10 x 10 mhos.

B - (k [y + inm] _ 4.10 x 10 - 3 mhos.BGAP - 157T ko')""

The corresponding value of m = 10.74 1 10.

Thus, the gap correction to be added to Y in Eq. 1. 54 is

4(koa) (koh) 10 1 4.x1-
BGAP j/60 kh. m mhos.

m= 1

This is exactly the last term on the right-hand side of Eq. 1. 54 which was

subtracted out. This means that in Eq. 1. 35 we need add only the first 10

terms, which represents the contribution to the susceptance from the first 10

higher--order modes, to get results for the susceptance which agree with

the experimentally measured values.
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Current Distribution on an Infinitesimally Thin Antenna

The general expression for the current distribution on the antenna is

given by :J. 34'. Consider now the term in this equation which involves the

series summation and denote it by S

coosrTzh

= 2 7 2 Cos mirzh (1. 63)

m=l Tm . Io(koaym). Ko(k oa Tm)

For small arguments, K (x) = log (Px), and 1o(x) - 1, where log =

- - log 2'- - 0.1159.

____ mTTm kh kh--

Hence
Pkoa~m = P a 7T

IhaY pi ). m

and

log (PkoaTm) = log (-a-,) + log m (1.64)

We note that as a - 0, log (Paw/h) - o

This means that for an infinitesimally thin antenna, with vanishing radius,

the log (Par /h) term completely predominates over the log m term.

Therefore,

log (Pkoa 0 ) a7 ' log (Par /h) (1. 65)
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Thus,for thin antennas

OD
S 2 ' - cos m71z/h

m=I Fm7/kh) 2~ _] Eg (k a-Yj

2koh-_ cosmIT z/h (1. 66)

log a -- 2 _ (koh 2

I -_
If the following summation formula, viz.,

Zo cos nx 1 7 cos (x - 71) a (. 67)
2 - 2 a sin 71 an= n -a Za

is used, the result is 271

k h cos k (h-z)1 /log (f a7/h) + o( 7 )oi k (1. 68)
log( Pah_ _ _v sin k 0h

For small arguments, Jo(x) '- 1 and H ° (2) W Ij 2 log (Px).

With 1. 34 , 1. 68 , and these identities the current distribution on an

infinitesimally thin antenna in a parallel-plate region is given by

1(z) = v _ _ _ _!_
-- + l - I +

0 (13kZa+ log -i--a

k h

a 0sin cos k (h- z) (1.69)
h 0
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This is of the form I(:z) = A + B cos k (h - z), and the current distribution0

is a slightly flattened cosine curve.

Current Distribution with a Filamentary Kernel

In the solution of the integral equation for the antenna current using

iterative methods, it is customary to replace the correct kernel distance

of the form '1. 0 by an approximate 'filamentary' kernel distance (1, 8)

given by

Rm =/ (z + z' - 2mh) 2 +a 2  (1.70)

It is assumed that h > > a.

While such an approximation may be valid for the free-space antenna

problems, it leads to divergence difficulties in the current in the case of

wave-guide probe investigations. Thus if 1,70 is substituted in 1. 5 and

the manipulations carried out the current distribution on the antenna comes

out as

= jV 1 + 2 cos m 7r z/h .(1.71)
I () Tok01 j-LH 2 )(k a) __ r 2y .K(k a-ymt m m=l 0

For higher values of m, ym - m7T/k ° h and

k ay - m
om- h

The asymptotic expansion for K (x) is

(T /2x)l / 2 e-x

therefore, l/Ko(koaym) . r 2 behaves like
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3 e+ (7 a /h). m --

2 (ka) . (koh)3  m+i/h "
0 m 3 /2

Thus,the series for the current distribution diverges. Such a divergence

difficulty has been noticed by Lewin (4) while investigating the problem

of a probe in a waveguide.

Distribution of Charge on the Antenna

The charge distribution may be ob'tined directly from the equation

of continuity
dl

zz+ jwq = 0 (1. 72)

where Iz = I"z + jI' z is given by Eq. 1. 34 . Thus from 1.72 the

distribution of charge

q(z) = j(q"z + Jq'z) =  j  a + 1

W0 Z z

so that for 0 < k h < 7T
0

q" - - 0. Since I"(z) is a constant for k h <i7 . (1. 73)
z 008

1 ____ V _____ m sinm 7i
z8z 30w (k0h) 2 ym2 io.( koa, )Ko ko4"

The charge distribution, being sinusoidal, is maximum near the center and

vanishes at the ends. When koh > 7T, qz" / 0 because of the contribution

from the first higher-order mode m - 1.
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3. VARIATIONAL METHOD

It has been shown in Section 2 that while the Fourier-series method

gives accurate solutions for the current distribution and conductance of

the antenna, the values for the susceptance obtained from it are ambiguous

because of the feed-point singularity in the current. The variational

technique, however, like the one employed by J. Storer (11) in the case of

a free-space antenna, ignores the singularity of the driving point and provides

an approximate but continuous solution for the current distribution over the

entire length of the antenna.

The stationary expression for impedance can be formulated in the

following manner:

h

V 6 (z) = j S K(z,z') I (z') dz'

0

The driving voltage V = Z 0 where Z is the input impedance and I -

input current, Therefore,
h

Z I 6(z) = o J K(z, z') I (:z:') dz' (1. 75)

0

If both sides are multiplied by 1(z) and integrated between 0 and h and then

divided through by I 2(0) the result is

h h
1

0 2 S f K(z, zI( )z) I (zr) dz dz (1. 76)

I 0 0
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where K(z, z') is the kernel given by 1. 29 and 1. 30. Since the kernel is

symmetric, i.e., K(z, z') = K(z', z), Eq. 1.76 can be shown to have all the

variational characteristics, and Z is stationary with respect to smallo

changes in Iz

According to 1. 34 and 1. 69, a suitable trial function for the current is

IT (z) = A + B cos k (h - z) . (1.77)

With this type of current distribution the impedance is given by

1 - J ro K(zz') A+Bcos k(h-z A+Bcosko(h-z') dzdz'V ' (0) L f ' 0 iL 0

z A A 2 V + 2A.B + B2V ( 8whV = 2VAA+ . BVAB BB (178)

where h h

VAA S S K(z,z )dzdz (1. 79)

0 0

h h

VAB f f K(z, z'). cos k(h-z) dz dz'

0 0

h h

Z') 1305 k 0 (h-z) + cos k(h-z' dz dz (1.80)

0 0
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h h

=BB . ,K(z, z') cos ko(h- z). cos koh - z') dz dz'. (1.81)

0 0

The two complex coefficients for the trial current A and B have to be

determined in order to calculate the impedance from 1. 78'. It is

assumed that a unit voltage is driving the antenna; the current at z = 0

is determined by the following condition'

V = 1 = IT(0). ZV

= A + B cos koh = 1/ (1.82)

From (1. 82)

A 1 - B cos k (1.83)

V

VBB . B2} (1.84)

Z V is an analytical function of the parameter B. Thus, the next step is to

equate 8B to zero and solve for the optimum value of B which makes

ZV stationary.

We obtain 1IFA BI

S-(185)
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where A = vAA cos 2 k h - 2AB cos k h + B (1.86)o AB oB

Using (1. 85) and (1. 83) we get

A 1 VBB'r VB cos kJ

A 1 B B ABcos]h (1.87)
zV

If 1. 87: and '1. 85' are substituted in :1. 78 the result is

V= AA VBB VABJ (1.88)
A

Evaluation of the 'v' integrals

The various v integrals occurring in the above equations can

now be evaluated; the following simple integrals will prove useful in

the derivation-

h

ycos ko(h - z) dz = sin kh/k

0

and h sink h

sink (h-z)cos IT dz = 0 (1.89)
f 0 h koI - (miT/kh)

2

From Eq. 1. 79 we have

h h -jkh (2)

VAA f f K(z,z')dz dz' 4 0 J(ka)1H (1.90)

0 0
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From {1.. 80.

h h

vAB f f K(z,z') cos ko(h - z) dz dz'
0 0

sin koh (k a) . H (2) (ka) (1.91)

4 0 o 0 0

0 <k h < 21.
0

From L-81*

h h

- BB f f K (z, z ') cos k (h-z) cos k (h-z') dz dz'VBB&

O 0

-1 J (k a) H (2 ) (ka (si, koh 2

2kh0 0 0 0 \O-

27T koh ' ka' k

+2 I°(kaA) K°(koaym) sin2 k h f o r 0 < k h< 7.

mzl

For higher-order terms

1 kh

Ikay)Ko (koa-y 0 2S(k a m 2k ay - 2(ka). mT

Therefore

I(k0aym)" Ko(koam) (koh)3  0 1

M 2(k 3 1 3 . 3aTm 2 (ka). 7T m m

where M is the truncation term in the series.
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Now I -k 1 "T (3) = 1. 202

m=l m

where c(s) is the Riemann Zeta function (12) defined by

~(S) = 1 + 1 / 2 s + 1 + when s>'I.
3 S

Therefore for 0 < k h < iT
0

2
-sin k ho 7T J ka.H(2)(ka

~BB 27 2Ik h , 0~a. (ka)0

+ 2m 10(0 Tm). K (ko 0 (k 0h)31

m_1_Y 27T 3.k 0a

+ 1.02 0(1.92)

For 7T <k h <2IT
0

- sin 2k 0h j7 (k H(2)(ka
~BB = 27T kh 2~ J0a. (ka)0

00

+2FjIT /2. J1k V1 - (OT /oh) 2 ).H~ 2 kayi (( /h2)

L ~ ~ ~ (iT/oh)2)(k)

2, (k a). ITj
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M 2 I (ka-ym)' K°(kaym) (k0h) 3

+2 __

m=2 7m2  k 0a  m

(kh)3

+ 1.202 3 (1.93)
7 .(koa)

The numerical evaluation of the admittance YV = 1/Z = GV + jBv

and the current distribution parameters A and B has been carried out

for k a = 0.0664 (a/X = 0.01058) with M = 10. The numerical values0

of A and B are given in Table 1-4 and they are plotted in Fig. 1-20.

From Figures 1-17, 1-18, and 1-19, it is seen that the theoretical

admittance values are in good agreement with experimental results until

k h = 3. 7 but deteriorate rapidly thereafter. The theoretical admittance0

values are tabulated in Table 1-5. Thus the trial function for the current

of the form.A + B cos k (h - z) is valid only in the range 0 < k h < 3.7O 0

but a modification will probably have to be made for longer lengths, to

account for the first-order mode which propagates when k h > r . In0

Tablel-6, the theoretical value for the susceptance BVA R obtained by

the variational method are compared with the susceptance values B o

obtained by the Fourier-series method, The difference BVA R - Bo is

almost constant up to k h = 2. 8250 and the average value of BVo =

+j3. 63 ; this compares favorably with the gap correction term BGAP =

+j4. 10 that has to be applied to Bo obtained by the Fourier-series method.
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The average difference BAI = IBEXP - BVI is only 10. 351 millimhos

indicating good agreement. In Table 1-7 susceptance BVAR obtained by

the variational method has been compared with experimental results.

The current distribution for an antenna with k h = 7T /Z and k a = 0. 0660 0

has been calculated from 1. 77 and the results are compared with the

experimental curve in Fig. 1. 21. It can be seen that the general

agreement is not as good as it was in the case of the Fourier-series

solution Fig. 1-6. In Fig. 1-15 the current near the driving point has been

compared with the experimental curve and the Fourier-series solution.

Though the qualitative agreement with experiment is rather poor, the

variational method does not show any abrupt 'logarithmic' rise near the

feeding point as in the case of the Fourier-series solution. It is interesting

to note that it is possible to obtain the far-field radiation pattern of the antenna

in terms of A and B.

Impedance of a Very Short Antenna

When the plate separation is small we may assume the current on

the antenna to be a constant. If we also assume a thin antenna, then

Z -= 00 1(0) h j -- Jo(k a). H(2)(koa) dz dz'
12(0) 27r h "0

00

0o h h

-o2 1 (koaym).Ko(koay) y 2 cos m7Tz cos mtTz'
-, 0 0 m 0 h h

m l 0 0

dz dz' (1. 94)
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Z 301T (koh) J (koa) . H( (ka)

For k°a<< 1, J (koa) - 1

H( 2 ) (koa) =l-j . 0. 1159 + log koa

Hence, the impedance of the antenna

Z = 307T (k0h) + j60kh . log (1/13k0a) (1.95)

The above result is the familiar formula for the impedance per

length h of an infinitely long wire carrying a uniform current.
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k h A x 10 3  B x 10 3

0

0. 5000 0,496 +j3.900 -0. 368 -j41.221
0. 7854 3. 366 +j12.293 -0. 239 -j20. 105
1 .0000 17. 334 +j10.336 -17. 643 -j17.650
1 .2960 1948 +j4.292 -0.031 -j0o.446
1 .5708 1 650 +j2.776 -0.011 -j8.873
1.8450 1 .361 +jl.826 +0.012 -j8. 195
2.0000 1. 254 +ji. 457 -0. 003 -j 8. 161
2. 3562 1 .064 +jO.813 -0.004 -j9.085
2.7000 0.907 +jO. 315 +0. 528 -j 11919
2.8250 0 753 +jO. 553 +7.094 -j14. 850
3. 3570 0. 315 -jO. 344 -6. 584 +j 15.703
3. 5000 0. 262 -jO. 335 -4. 525 +j9. 510
3.9270 0. 207 -jO.495 -2. 392 +j3 .625
4. 3000 0. 316 -jO. 814 -1. 253 +jl . 185
4. 6200 0.854 -jO.018 +1. 504 -jO .440
4. 7124 1. 154 -jO. 993 +2. 931 -jO . 173
4. 9000 1. 374 -jO. 360 +4. 306 +j2 .784
5. 1000 1 .234 +jO.080 +4. 091 +j5 .310
5. 4978 0. 702 +jO. 207 +0.993 +j5..686
5. 8000 0. 594 +jO. 252 +2. 335 +j13. 200

TABLE 1-4 . Current Distribution Parameters

A and B in IT = A + B cos k (h -z).
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YV = G V + jBv = Variational Admittance

koh Gv[mhos x 10 ] BVj[mhos x 10 3 ]

0. 5000 4.71 -5.89
0.7854 3. 18 -1.76
1.2960 1.94 +1.45
1.5708 1. 60 +2.77
1.8450 1. 35 +4.04
2.0000 1. 26 +4.85
2.3562 1.06 +7.23
2.7000 0. 92 +11.44
2.8250 0.89 +15.42
3. 3570 6. 88 -15. 69
3. 5000 4. 52 -9. 25
3.9270 1.89 -3. 06
4. 3000 0.81 -1. 27
4.6200 0.72 -1.03
4.7124 1. 15 -0.99
4.9000 2. 17 +0 16
5.1000 2.78 +2.08
5.4978 2. 05 +5. 60
5.8000 2. 66 +11.94

TABLE 1-5. Theoretical Admittance of Antenna Determined by

Variational Method; a/A = 0.01058 ; Truncation TermM=10.
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BVo = BVAR -B0

BVAR Susceptance Obtained by Variational Method

B = Susceptance after Suibtracting Infinite Gap Capacitance Obtained
0

by Fourier-Series Method.

k B =B - B ba Va BVAR a

0. 7854 +j3. 63
1.2960 +j3,70
I. 5708 +j3. 76
1.8450 +j3.79
2.0000 +j3. 79
2. 3562 +j3. 89
2. 7000 +j3. 17
2. 8250 +j3. 31

Average value of B = + j3. 63

TABLE 1-6., Comparison of Susceptance B Obtained by the Variational
VAR

Method with the Susceptance B after Subtracting Infinite
0

Gap Susceptance obtained by Fourier-Series Method.
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B A BEXP B VAR

BVAR = Susceptance Obtained by Variational Method

BEXP = Measured Susceptance

k h B VAR[mhos x 10 3  BEXp[rhos x 0 3  BEXP- BVAR

=BA[mhos x 103]

0. 78 4 .-jl. 76 -jl. 10 +jo. 66
1. 2960 +j1. 45 +jl. 60 +jo. 15
1. 5708 +j2. 77 +j3. 10 +j0. 33
1.8450 +j4. 04 +j4. 50 +j0. 46
2. 0000 +j4.85 +j5. 30 +j0.45
2. 3562 +j7. 23 +j7. 6 0 +j0O. 37
2. 7000 +jl1.44 +jll. 50 +jO.06
2.8250 +jl 5. 42 +j1 5. 00 -jO. 42
3. 3570 ;j15.69 -j15. 50 +jO. 19

Average value of I:BA I = 0. 35 millimhos

TABLE 1-7. Comparison of Susceptance BVAR Obtained by the Variational

Method with the Experimentally Measured Susceptance BEXP

(a/X = 0. 01058; M = 10).
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4, EXPERIMENTAL EQUIPMENT AND MEASURING TECHNIQUES

This section is devoted to the experimental phase of this research.

The experimental arrangement can be divided into two major groups:

1. The parallel-plate region with the associated absorbing wedges for

reducing edge reflections; 2. The coaxial measuring line and ancillary

equipment for measuring the input admittance and current distribution

of the antenna.

Choice of Frequency

The experimental design of the equipment was complicated by the

problem of selecting a suitable frequency which was a compromise between

two contradictory factors -

1. It was not practically convenient to have ground planes

larger than 6 ft. square because of the size limitations

of the laboratory room; hence, the frequency had to be

high enough so that the error due to the finite size of the

ground planes was not very significant. Besides, inordinately

large and heavy ground planes were undesirable since it

would then be very difficult to vary the plate separation

without resorting to complicated mechanical devices.

Moreover, as the frequency decreases it becomes increasingly

difficult to find suitable absorbing material to terminate the

rims of the parallel-plate region to minimize edge reflections.
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2. The frequency at the same time had to be sufficiently low

in order not to limit the accuracy of the measuring

equipment, because of the mechanical tolerances involved

and to minimize deleterious effects like probe loading and

large end-corrections. Furthermore, the plate spacing

had to be varied by small fractions of a wavelength in order

to study the behavior of the input admittance of the antenna

as a function of its length; this could be accomplished more

easily at longer wavelengths.

It was proposed to carry out the measurements at a frequency of

1000 Mcs. (L Band) which seemed to be a reasonable compromise between

these two extremes and had the additional advantage that convenient

oscillators were readily available.

Design and Construction of the Parallel-Plate Region

The error due to the plates being finite instead of infinite as

theoretically required is difficult to estimate as no adequate experimental

data are available. However, from a study of the results obtained for

antenna impedance measurements in free space it was decided that the

minimum size of the plates should be six wavelengths to obtain reasonably

accurate results. Meier and Summers (13) have studied the effect of screens

smaller than 6K on the measured input admittance of antennas in free space.

For a square ground plane of side 6K they have reported a maximum error

of IQ for a thin antenna of length h/K = 0. 224 and an error of + 25 ohms

for a length of h/K = 0. 448. The percent error in I Z I could thus be
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almost 3 o/o ; the errors are found to be slowly damped oscillatory

functions of the dimensions of the ground screen. The corresponding errors

in the case of a parallel-plate region are likely to be of a lower order of

magnitude since the edge reflections can be virtually eliminated by using

absorbing wedges. To reduce the error further the antenna was mounted

off-center by a quarter-wavelength. Andrews(14) reports that for an antenna

placed off-center the error varies as d- where d represents the side

dimension of the image plane.

In accordance with the above requirements the over-all dimensions

of the parallel-plate device were made 6 feet x 6 feet (or approximately

6 wavelengths square at 1000 Mc). Actually the bottom plate measured
1'

6 feet x 12 feet (6X x 1ZX) and was fabricated from - Dural sheets

mounted on a sturdy wooden framework to prevent sagging. To enable the

measurement of the standing-wave ratio inside the parallel-plate region the

I"
lower plate was divided lengthwise by a sliding panel made from -T-

Dural sheet 6 -1 feet long x 1 inch wide. The panel carried a small electric

probe near its center and could be driven by means of a geared-down motor

and a cable sliding over a pulley. The position of the probe could be

determined to 0,1 mm by means of a steel scale and a vernier mounted

on the lower plate. Fig. 1. 2Z shows a picture of the sliding panel

probe and driving mechanism. The top plate was deliberately made

very light so that the plate spacing could be varied easily by merely

1
raising or lowering the upper plate. It was fabricated from a

Dural sheet mounted on a light plywood frame. The spacing between
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two plates was maintained by wooden posts placed at the four corners;

these seem to have little effect on the field distribution within, since

the field strengths at the edges of the plates are relatively low. The plate

separation could be varied by small distances with the help of thin

plastic slabs placed on the supporting wooden posts. During the course of

the experiment the plate spacing (antenna height) was varied from

(0. 04X) to 12" (1. 016N). While examining the behavior of the antenna near

resonance the plate spacing had sometimes to be varied by intervals as small

as 0. 3 cm (0. 01P). The plates were aligned by means of metal pins which

fit through holes at the sides of the two plates so as to index the upper

plate relative to the lower; after adjusting the plate spacing by means of the

wooden corner posts, the metal pins were removed to avoid possible

perturbing effects during the course of the measurements. The joints and

screw slots on the surface of the plates were covered with strips of . 00111

aluminum foil with silver paint as adhesive. The two plates were carefully

levelled to within 0. 010 inch with the help of a theodolite and any unevenness

noticed was corrected by placing suitable shims beneath the plates. Row (15)

has investigated the effects of small variations in plate spacing and it is

found that in practice, gradual departure from the ideal has very little effect

on the performance, though sudden discontinuities may cause partial

reflections. Bracewell (16) has found that the effect of these discontinuities

is to introduce a shunt capacitance Cd ( a ) in the parallel-plate line whose

magnitude is given by
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C 2 -OD sin nT a

where a is the ratio of the spacings (see Fig. 1-23 )and 8o (. 085

picofarads/rneter) is the permittivity of free space. If the discontinuity

is not large ( (a' >0. 9) the discontinuity capacitance is only a minute

fraction of a picofarad and does not cause noticeable perturbation. The

other references which were helpful in designing the parallel-plate region

were (17-20)•

Absorbers

The wave propagating inside the parallel-plate region suffers a

partial reflection at the edges because of the discontinuity in impedance.

The theoretical value of the reflection coefficient as a function of plate

spacing has been calculated by Marcuvitz (21) and is plotted in Fig. 1-24

It can be seen that strong reflections occur for close plate spacing which

can seriously affect the measured value of the admittance of the antenna.

In order to eliminate the reflection it was necessary to terminate the rims

of the parallel plate with absorbing wedges. The wedges had to be

sufficiently thin (approximately 1 cm) so that the plate separation could

be varied in small intervals in order to study the behavior of the antenna

admittance as a function of its length. Commercially available L-band

absorbers, besides being prohibitively expensive, were also far too large

to be suitable for the purpose of this experiment. It was therefore decided
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to make the absorbers in the laboratory itself from linearly tapered

polyfoam wedges coated with an energy dissipating substance like carbon

black or graphite. The two determining factors (22) in the design of these

'gradual transition' type absorbers are (1) the length of the transition,

(2) the optimum layer thickness of the absorbing substance. The lower

frequency limit is given by the length of the wedges. Halford (23) has shown

that the reflection coefficient of such wedges varies periodically with their

length as shown in Fig. 1, 25 . There appears to be no clear--cut upper

limiting frequency, though in the case of acoustic absorbers (24),it is

found that the reflection rises at higher frequencies when separation

between the individual wedges becomes too large. Because of its low

dielectric constant and the ease with which it could be cut and tapered
1

the wedges were made from --- inch thick polyfoam sheet and were

tapered for 1 wavelength (11 3/4 inches). The separation between the

individual wedges was approximately 5 cm ( -- X) and the total length of
1

each wafer was 4 1 feet. Thin plywood strips provided with wooden screws

were glued to the base of these wedges. The wedges were then sprayed

with 3-E-14D Black No. 1 -- a colloidal dispersion of carbon black in liquid

Neoprene, a product manufactured by the General Latex and Chemical Co.,

Cambridge, Mass. The whole wafer thus assembled (see Fig. 1. 26)

could be inserted inside the parallel-plate region and screwed onto slotted

wooden panels placed at the edges of the parallel plates. The plate
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separation could be easily varied by removing or adding each wafer in turn,

Fig. 1. 28 shows a picture of the parallel-plate region with the top plate

removed; the absorbers mounted on wooden panels, the antenna and the

sliding panel with probe for measuring the standing-wave ratio in the guide

can all be seen in the picture. Fig. 1. 29 gives a side view of the same

arrangement with the top plate in place.

The favorable layer thickness of the carbon black mixture was

determined by giving the wedges various coatings and determining the

standing-wave ratio in each case. Fig. 1. 30 gives the normalized field

distribution inside the parallel-plate region with and without the absorbing

wedges for a plate separation of h/A = 0. 084 . The standing-wave ratio

without absorbe.rs was 1. 72 at a distance of about 25 cm from the antenna.

After the insertion of the absorbing wedges with about 4 coatings of~the carbon

black mixture the SWR was brought down to about 1. 12. No appreciable

reduction in SWR was noticed by increasing the number of coatings on the

wedges. The normal component of the electric field in the parallel-plate

guide is given by Ez = clio(2) (k r) where k O = 2/. This has also been

plotted in Fig. 1. 30 for the sake of comparison. It can be seen from

Fig. 1. 24 that the edge reflections become less pronounced as the plate

separation increases. This fact was also confirmed experimentally. For

large spacings the SWR fell to less than 1. 07 . However, When the plate

separation was a half-wavelength a sudden increase in SWR was noticed.
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The reflection coefficient calculated from Marcuvitz's admittance values

does not account for this phenomenon. After inserting the absorbers,

however, the SWR was once again brought down to a. reasonable level.

Measuring Techniques

The experimental techniques for measuring the impedance and

current distribution of the antenna have become fairly standardized, thanks

to the efforts of the previous research workers in this laboratory.

The coaxial measuring line was quite similar to the one devised by

T. Morita. (25); a schematic sketch of the line is given in Fig. 1. 31. The

measuring line was installed vertically beneath the parallel-plate region,

In order to reduce the end effects and the possible effect that the aperture

of the coaxial line might have on the multiple series of images, the ratio

of the diameters of the outer to the inner conductor was chosen to be 2. 25.
1?!

The center conductor of the coaxial line was - diameter brass tubing;

it could be extended from 0 to 32 cm above the lower ground screen by
i"

means of a rack and pinion arrangement. The inner conductor had a slot

along its entire length, through which the shielded probe could travel.

3 'I
The probe was mounted on a - -.-- brass tube which slid inside the center

conductor and was positioned by another rack and pinion arrangement.

Both the probe and antenna could be positioned to 0.1 mm by means of a steel

scale and vernier. The signal from the probe to the detector was carried

by a microdot cable. The coaxial line was driven by means of a T-shaped

stub, connected to the main line at a distance of /4 from the short-

circuited end, The probe was small shielded loop, approximately 2. 5 mm
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(0. 008X) in diameter; it was made from .021" 0. D. x .003" wall

'precision coaxitube. (See Fig. 1. 27). Since the frequency of 1000 Mc

used in these experiments is considerably higher than frequencies hitherto

used in this laboratory for antenna measurements of this nature, a

comprehensive series of tests was made to determine the accuracy of the

measuring equipment. Particular attention was focused on the preparation

of the probe which usually causes the greatest errors. Care was taken to

construct the probe symmetrically, since in the vicinity of a current

minimum, slight asymmetries can introduce sizeable errors. That the

final probe is well-balanced is shown by the symmetry of the distribution

curve near a current minimum. (Fig. 1. 32). In order to determine the

possible perturbing effect of the probe, the coaxial line was short-circuited

and the experimentally measured current distribution ctirve inside the line

was compared with an ideal sinusoidal distribution. As can be seen from

Fig. 1. 33 the probe does cause slight perturbation at the peak of the curve,

but the effect does not appear to be significant enough to cause appreciable

errors. The input impedance of a free-space monopole as measured with

the present experimental set-up compared favorably with the values

obtained by Hartig (27). The constants of the measuring line are listed below:

Inner radius of outer conductor b = 9/32 inch.

Outer radius of antenna a = 1/8 inch.

b/a = 2.25
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Characteristic admittance of line = Y = 20. 57 mhos.c

Characteristic impedance Z = 48. 6 ohms.c

Frequency of measurement = 1000 Mc.

Wavelength in air = 30 cm.

Wavelength in line = 28. 9 cm

Capacitive end-correction = BT = WCT = -0. 584millimhos.

Apparatus.

A superheterodyne detecting system was used in the experiment.

The signal generator used in the experiment was a General Radio Type

1218-A Unit Oscillator having a frequency range of 900-2000 Mc . and a

maximum power output of 200 MW. Higher harmonics generated by the

oscillator were suppressed by a GR Type 874-FlOOO low-pass filter with

a cut-off frequency of 1000 Mc. (+ 10 0 /o ). To avoid frequency pulling

the oscillator was isolated from the rest of the circuit by a 20 db

attenuating pad. The detecting system consists of a General Radio Type

1216 A-I. F. Amplifier used in conjunction with a GR Type 874-MR mixer

rectifier with a type 1-N21B crystal diode. The local oscillator was another

GR Type 1218-A Unit Oscillator, The I., F. amplifier is provided with a

70 db precision step attenuator with an accuracy of + 0. 3 db + 10/0 ;

good linearity is obtained over the whole range of the instrument. The

amplifier was calibrated by using the sinusoidal voltage distribution in a

short-circuited coaxial line as a reference. The calibration curve is shown

in Fig. 1.34.
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A schematic sketch of the experimental layout is shown in Fig. 1. 35.

Figure 1. 36 gives a pictorial view of the apparatus.

Current Distribution

The current distribution on the antenna can be completely described

by measuring the relative amplitude and phase. The amplitude can be

measured quite easily by connecting the probe output directly to the

detecting system through a tuning network.

In order to measure the relative phase, the signal from the probe

is compared with a reference signal obtained from a non-resonant slotted

line terminated in its characteristic impedance, The phase line used in

the experiment was a Hewlett-Packard Model 805A slab line terminated

by a GR Type 874 WM 50 ohm termination; the standing-wave ratio on the

line was less than 1. 05. The probe and the reference signals are mixed

in by a coaxial hybrid junction (Narda Model No. 3032). The difference arm

of the hybrid was connected to the detecting system. By adjusting the

phase and amplitude of the reference signal from the phase line a

maximum indication could be obtained, signifying that the two signals

are 1800 out of phase. After establishing such a reference point, the phase

at other points along the antenna could be determined with respect to it

by simply noting the distance between the minimum settings of the probe

in the phase line.
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Admittance Measurement

Two techniques were employed to measure the input admittance of

the antenna. At low VSWR the ratio of maximum to minimum current was

measured directly and the terminal function p s of the antenna load was

calculated from the formula

Psa = cothI S

where S = current standing-wave ratio. At higher VSWR the terminal

function was determined by the distribution curve (double minimum) method.

If A wo is the distance between half-power points, the apparent terminal

function is given by

Psa = P where 2 Tg

where k g is the wavelength in the coaxial line.

The apparent phase function can be found from the equation

4D -T- +  - )
~sa 2 1 - 2)

where w 1 is the position of the current minimum with a short-circuit

terminating the line and L)2 is the current minimum with the antenna

load. The input admittance may then be calculated from the formulas.

G _ sinh 2p
Y - cosh2p + cos2dc

B/Y sin2 4
c cosh 2p+ cos 2 4



SRI5 -59-

and Ya = G + jB ; Yc = charge admittance of line,

End Correction

The ideal or theoretical antenna admittance Y0 may be obtained

from the corresponding measured apparent admittance Ya by noting that

Ya = Y  + jWC T

where CT is a lumped terminal zone capacitance that takes account of end

and coupling effects near the end of the measuring line. C T has been

evaluated approximately (26) and is given by

cT = - f (b/a) cob

where c = 27r 0 /in (b/a) is the capacitance per unit length of the line, a

is the antenna radius and b is the inner radius of the outer conductor of

the coaxial line.

The function f(- - ) = CT/cob has been given in (26). For
a -To

b/a = 2. 25, - CT/cob = 0. 18937. The corresponding end-correctionis

-jW CT = - 0. 5839xi0 - 3 mhos . The end-correction in (26) is for a/A =

3. 9x10 3 . The correction to be applied to the experimental results is likely

-3to be slightly larger since a/X = 10. 05x10 - 3 . However, this difference in

correction term is almost negligible, particularly since the capacitance end-

correction is very small and can be virtually ignored except in the vicinity

of resonance and antiresonance.
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APPENDIX - I

Equation 1. 28 may be rigorously derived in the following manner.

Consider the integral

7T

Q = K (j2koa sin 9) dQ (1. 28)

0

From the identity

K (j2k a sin Q)= -j7/2 H (2) [2k a sin Q]

it follows that

Q=j/§/2 sing]dQ -j /2( Jo(csing)dO-j No (csinQ) dO

0 O0

where c = 2k a . (1.96)
0

Using the formula

IT

5n2 (z) - i Jo (2zsin V) cos 2na d for n=O,l, 2...

0

we have

§ 0(csinQ) d = 7T J 2 (c/2) . (1. 97)

0

Consider now the integral

7T

S N0 (c sin 0) dO

0
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The integral representation for the N function is given by 5[M and 0, p. 27]

1 v Oo
2 ( -Tx) 1 cosxt

N (x) = Cos 2_ dt

- V) r(- 1 2 _1(tZ- l)v+ -

1

for -1/2 < Re v < -L ; x real and positive.

When v = 0 we have

N 0 (csin Q)d = _2/7T § cos(cs'inQ) t dt dQ

0 o" t -

OD 7T

= - 2/T dt § cos (ctsin)dQ . (1.98)

t -1 o

Since
7T

.cos(ctsin O) dO = J (ct)

0

N o (csinQ)dQ = - 2 dt (1.99)

0 J 2 1

Making the substitution t = p + 1, we have

• t1C dt ( 2+1 dp (1. 100)

Using, another identity given by (5)
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J/ 2 (x/2) N/ (x/2) -2/IT 00 JV ,X/ + 1) dt

0 \/t +1I

(Re v >-I, x real and positive)

we have for v = 0

00 J (x t,2 +
dt -T/2 Jo ( x/2) No (x/2).(10)

0 V t + 1

Using 1. 100 and 1. 10 1 in 1. 99

7T

No (c sin Q) dQ = 7r Jo (c/2) No (c/2) (1. 102)

0

Substituting 1. 97 ,1,102 in 1. 96 we obtain

7T

K= (j 2k asin Q)jIT 2/2 j (k a) H (2 ) (k a) .(1. 28)

0



Air Force List A

AFMTC AUL
(AFMTC Tech Library-MU-135) Maxwell AFB, Alabama
Patrick AFB, Florida

AFOSR, OAR (SRYP)
OAR(RROS, Col. John R. Fowler) Tempo D
Tempo D 4th and Independence Ave.
4th and Independence Ave. Washington 25, D. C.
Washington 25, D. C.

RADC (RAALD)
ASD (ASAPRD-Dist) Griffiss AFB, New York
Wright-Patterson AFB, Ohio Attn: Documents Library

AF Missile Development Center Hq. OAR
(MDGRT) (RROSP, Major Richard W. Nelson)
Holloman AFB, New Mexico Washington 25, D. C.

Commanding General, USASDRL Department of the Army
Fort Monmouth, New Jersey Office of the Chief Signal Officer
Attn: Tech. Doc. Ctr. Washington 25, D. C.

SIGRA/SL-ADT Attn: SIGRD-4a-2

Commanding Officer Redstone Scientific Information Center
Attn: ORDTL-01Z U. S. Army Missile Command
Diamond Ordnance Faze Laboratories Redstone Arsenal, Alabama
Washington 25, D. C.

DDC (TIPPA.A) [1 0]

Office of Scientific Intelligence Arlington Hall Station
Central Intelligence Agency Arlington 12, Virginia
2430 E Street, N W.
Washington 25, D. C. Director

Langley Research Center
Scientific and Technical National Aeronautics and

Information Facility Space Administration
Attn: NASA Representative Langley Field, Virginia

(S-AK/DL)
P.O. Box 5700 Chief, Bureau of Naval Weapons [2]
Bethesda, Maryland Department of the Navy

Attn: DLI-31
Director (Code 2027) [2] Washington 25, D. C.
U. S. Naval Research Laboratory
Washington 25, D. C. Director, USAF Project RAND

The Rand Corporation
AFCRL, OAR(CRXRA-Stop 39) 1700 Main Street
L. G. Hanscom Field [1-Ot Santa Monica, California
Bedford, Massachusetts THRU: AF Liason Office

Technical Information Office Library
European Office Boulder Laboratories
Aerospace Research National Bureau of Standards
Shell Building, 47 Cantersteen Boulder, Colorado
Brussels, Belgium

Aero Res. Lab. (OAR)
Office of Naval Research AROL Lib. AFL 2292, Bld. 450
Branch Office Wright-Patterson AFB, Ohio
London
Navy 100, Box 39 Defense Research Member
F. P. 0., New York, New York Canadian Joint Staff

2450 Massachusetts Avenue, N. W.
Massachusetts Institute of Washington 8, D. C.

Technology
Research Laboratory U.S. Army Aviation Human Research Unit
Building 26, Room 327 U.S. Continental Army Command
Cambridge 39, Massachusetts P.O. Box 428, Fort Rucker, Alabama
Attn: John H. Hewitt Attn: Maj. Arne H. Eliasson

*One copy, unless otherwise specified by numbers enclosed in brackets.

tMail separately from any other reports going to this Hqs.



Air Force List K*

ASD(ASRNRE-3, Mr.Pau Springer) Director
Wright-Patterson AFB Evans Signal Laboratory
Ohic Belmar, Nnw Jersey

Attn: Mr. 0. C. Woodyard
Director
U.S. Army Ordnance Airborne Instruments Laboratory, Inc.
Ballistic Research Laboratories Division of Cutler Hamer
Aberdeen Proving Ground Watt Whitman Road
Maryland Melville. L. I., New York
Atto: Ballistic Measurements Lab. Attn: Dr. E. Fubine. Director

Research & Engineering Division

Stanford Research Institute [21
Menlo Park, Califorto [ Bell Aircraft Corporation
Atto: Dr. D. R. Scheuch, Asst. Dir. Post Office Box I
Division of Engineering Research Buffalo 5, New York

Attn: Eunice P. Hazelton, Librarian
Goodyear Aircraft Corporation

1210 Massillon Road Lockheed Aircraft Corporation
Akron 15, Ohio California Division, P.O. Box 551
Attn: Library, Plant G Burbank, California

Attn: Mr. H. Rempt

Convair, A Division of
General Dynamics Corporation Ryan Aeronautical Company

3165 Pacific Highway 2701 Harbor Drive
San Diego 12, California Lindbergh Field
Attn: Mr. R. E. Honer San Diego 12, California

Head Electronics Research Attn: J. R. Giantvalley

Ch. Associates Boeing Airplane Company
P. D. Box 387 Aero Space Division
Whiteomb Avenue P. D. Box 3707
Littletan, Massachusetta Seattle 24, Washington

Attn: R. R. Barber
General Electric Company Library Supervisor
Building 3, Room 143-I

Electronic. Park Office of Naval Research (Code 427)
Syr.cuse, New York Department of the Navy
Attn: Yolanda Burke Washington 25, D. C.

Danameosts Library California Institute of Technology

AFCRL, OAR Jet Propulsion Laboratory
L. G. Hanscom Field Pasadena 4, California
Bedford, Massachusetts Via: District Chief, Attn:ORDEV-M
Astn: CRRD: Carlyle J. Sletten[3 Las Angeles Drdnance District

CRRD: Contract Files [ 55 5 Grand Avena
CRRD: Robert A. Shore [6] Pasadena, California

Chief of Naval Operation Polytechnic Institute of Brooklyn

Department of Ithe Navy Microwave Research Institute
Attn: OP-413-B21 55 Johnson Street
Washington 25, D. C. Brooklyn, New York

Attn: Dr. Arthur A. Oliner [2]
Commander
U. S. Naval Air Missile Test Center The Pennsylvania State University
Point Mugu, California Department of Electrical Engineering
Attn: Code 366 University Park, Pennsylvania

University of California Purdue University

Department of Engineering Department of Electrical Engineering

Berkeley 4, California Lafayette, Indiana
Attn: Antenna Laboratory Altn: Dr. Schults

Cornell University University of Tennessee
School of Electrical Engineering Ferris Hall
Ithaca, New York W. Cumberland Avenue
Attn: Prof. G. C. Dalman Knoxville 16, Tennessee

The Johns Hopkins University Dr. U. Ues

Radiation Laboratory [2] University of Kansas
1315 St. Paul Street Electrical Engineergin Department
Baltimore, Maryland Lawrence, Kansas

The Johns Hopkins University Ohio State University Research Foundation
Applied Physics Laboratory (2] Antenna Laboratory
85621 Georgia Avenue Attn: Dr. C. H. Walter
Silver Springs, Maryland 1314 Kinnear Road

Columbus 12, Ohio
McGill University
Montreal, Canada Case Institute of Technology
Attn:Prof. G.A. Woonton, Director Cleveland, Ohio

The Eaton Electronics Research Lab.I[Attn: Prof. S. Seeley

Georgia Technical Research test. New York University
Engineering and Experiment Station Institute of Mathematical Sciences
722 Cherry Street, N. W. 25 Wavenly Place, Room 802

Atlanta, Georgia New York 3, New York
Attn: Dr. James E. Boyd Attn: Prof. Morris Kline

The University of Texas The University of Michigan
Defense Research Laboratory Engineering Research Institute

Austin, Texas Willow Run Labs. Attn: Librarian
Attn: Claude W. Horton Willow Run Airport

Physics Library Ypsilanti, Michigan

*One copy, unless otherwise specified by numbers enclosed in brackets.



SR15

Electronics Research Directorate 1. Antennas and
Air Force Cambridge Research Labs. components
Office of Aerospace Research,USAF I. AFProject 5635
Bedford, Mass., Rpt. No. AFCRL63-90 Task 563502
THEORETICAL AND EXPERIMEN- II. Contract AFl 9
TAL STUDIES OF ANTENNAS AND (604)-4118
ARRAYS IN A PARALLEL-PLATE II. Cruft Laboratory
REGION:PART I, THE CURRENT Harvard U. Cam-
DISTRIBUTION AND INPEDANCE OF bridge, Mass.
AN ANTENNA IN A PARALLEL- IV. B. Rama Rao
PLATE REGION. Interim Scientific V. Sci Rpt. No. 15
Rpt. No. 15(Series2), 5 October 1962, (Series 2)
6 6 pp., illus., tables, 27 refs. -Present- VI.
ed at the URSI-IRE Fall Meeting, VII. In ASTIA
Ottawa, Canada, October, 1962. collection
Unclassified Report 0

Closed form expressions for the
current distribution and impedance
of an antenna in a parallel-plate
region have been obtained by an
integral equation technique. Inter-
esting features connected with the
antenna are (1) the logarithmic
singularity in the current near the
driving point because of the ideal-
ized delta-function generator (2)
behavior at resonance. The theoret-
ical results have been verified ex-
perimentally and a description of the
apparatus is included in the report.
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